
J .  Fluid Mech. (1993), vol. 257, pp. 691-721 
Copyright @ 1993 Cambridge University Press 

69 1 

Interactions between a free surface and 
a vortex sheet shed in the wake of 

a surface-piercing plate 
By WU-TING TSAI AND DICK K .  P.  YUE 

Department of Ocean Engineering, Massachusetts Institute of Technology, 
Cambridge, MA 02139, USA 

(Received 22 February 1993 and in revised form 1 July 1993) 

The nonlinear interactions between a free surface and a shed vortex shear layer in 
the inviscid wake of a vertical surface-piercing plate are studied numerically using a 
mixed-Eulerian-Lagrangian method. For a plate with initial submergence d starting 
abruptly from rest to constant horizontal velocity U ,  the problem is governed by a 
single parameter, the Froude number Fn = U / ( g d ) i ,  where g is the gravitational 
acceleration. Depending on Fn, three classes of interaction dynamics (subcritical, 
transcritical and supercritical) are identified. For subcritical Fn (2 0.7), the free 
surface plunges on both the forward and lee sides of the plate before significant 
interactions with the vortex sheet occur. For transcritical and supercritical Fn, 
interactions between the free surface and the starting vortex result in a stretching of 
the vortex sheet which eventually rolls up into double-branched spirals as a result of 
Kelvin-Helmholtz instability. In the transcritical range (Fn - 0.7-LO), the effect of 
the free surface on the double-branched spirals remains weak, while for supercritical 
Fn (2 l.O), strong interactions lead to entrainment of the double-branched spiral into 
the free surface resulting in prominent surface features. 

1. Introduction 
The fundamental problem of the interaction between a free surface and a shear 

layer has attracted increasing attention in recent years motivated in part by the 
observation of persistent observable features in ship wakes. Considerable progress 
in both experimental investigation and numerical simulation of such phenomena has 
been made with emphasis on the interaction dynamics between the free surface and 
a given vortical flow. An example is the work of Yu & Tryggvason (1990), who 
study numerically the interaction of two-dimensional vortex flows with a free surface. 
The vorticity is modelled as point vortices, vortex sheets and vortex patches. They 
find that distinct free-surface motions are generated depending on the initial vortex 
configuration. 

Another example is the numerical experiment of Dimas (1991) in which a shear 
flow with a mean velocity profile in the vertical direction is used to simulate the 
wake behind a two-dimensional submerged body. The Euler equations subject to 
free-surface boundary conditions are solved numerically. It is found that for a 
sufficiently large submergence, the interaction between the shear layer and the free 
surface is suppressed, and the flow reaches a quasi-steady state. For a smaller 
submergence, vortices form very near the free surface causing breaking surface 
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waves. The mechanisms involved in the interaction dynamics between the free 
surface and vorticity flow, however, were only partly identified. Moreover, no detailed 
quantification of the interaction features with respect to the submergence and velocity 
of the body was carried out. 

The primary goal of this research is to identify and quantify, through careful 
numerical simulations, the basic mechanisms of the fully nonlinear body-vortex-free 
surface interactions including generation, evolution and the coupled dynamics. Of 
special interest is the understanding and quantification of the critical role of the 
Froude number. 

To reach these objectives, we consider the canonical problem of a thin vertical 
surface-piercing plate of initial submergence d ,  moving abruptly from rest to a 
constant horizontal velocity U .  The free surface rises sharply on the forward face and 
is drawn down on the rearward face into close proximity with the trailing vortex sheet 
shed from the lower edge of the strut. The resulting interaction dynamics among 
the body, free surface and the vortex sheet in the near-body wake are extremely 
complex and are not completely understood. Significantly, the present problem is 
governed by only a single parameter, the Froude number F n  = U / ( g d ) I ,  where g 
is the gravitational acceleration, so that a systematic study varying this parameter 
allows us to reach a complete quantification and understanding of the underlying 
mechanisms. 

One important distinction between this and previous computational studies is that 
the strengths and positions of the vorticity are not prescribed as initial conditions. 
The vortex shear layer here is shed by the strut under the influence of the free surface 
and vorticity flow, i.e. in the actual wake of the body. While the problem is simplified 
by a body possessing a sharp edge for which simple models for vortex generation can 
be used, the problem includes all the important interaction dynamics of vortex-body- 
free surface flows. Aside from fundamental scientific interests, the present problem 
may be of practical importance in the analysis of damping of shallow-draft bodies, 
the performance of lifting surfaces near a free surface, and the wave disturbances 
generated by the operation of such surfaces. 

In the present work, the fluid is assumed to be inviscid and the free shear layer 
confined in an infinitesimal vortex sheet, outside of which the flow is irrotational. 
Thus the characteristics of a real, high-Reynolds-number flow are approximated by 
assuming the effects of viscosity to be confined to infinitesimally thin boundary 
and shear layers. The validity of such discrete-vortex approximations has been 
controversial, and has been the subject of vigorous debate since the pioneering work 
of Rosenhead (1931) and its subsequent criticism by Birkhoff & Fisher (1959). A 
comprehensive review of the various vortex methods and their practical applications 
can been found in Sarpkaya (1989), which also includes an extensive bibliography of 
these and related work. 

For an infinitesimal vortex sheet, it is well known that the rate of growth of 
Kelvin-Helmholtz instabilities increases with the wavenumber of the disturbance (e.g. 
Lamb 1932) and the problem is strictly not well posed. In numerical simulations, such 
instabilities on a thin vortex sheet quickly manifest themselves and eventually destroy 
the calculation. In the physical problem, these absolute instabilities and singularities 
are absent due to the presence of viscosity. By introducing a small degree of numerical 
filtering (or damping) of the highest wavenumbers, the instability of the mathematical 
problem is likewise removed in the computational problem (Moore 1981; Krasny 
1986~). It should be pointed out that such filtering or damping of short waves is 
essential in any inviscid model, since the presence of strong nonlinear interactions 
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will inevitably cause energy to transfer to and ultimately accumulate at the highest 
wavenumber modes represented. 

Even when (a small amount oq filtering is applied, another instability has been 
shown to manifest itself after finite time (Moore 1979; Sulem et al. 1981; Meiron, 
Baker & Orszag 1982; Krasny 1986a) beyond which the curvature of vortex sheet 
becomes infinite at some point and the vorticity distribution forms a cusp. Although 
the existence of a solution to the mathematical problem after the appearance of 
the finite-time singularity is still unclear, the limiting numerical solution of the 
approximate equation such as in Krasny (1986b) indicates that the vortex sheet 
deforms into a double-branched spiral with an infinite number of turns centred at the 
singularity. In practice, if details of the local singular flow features are not of primary 
interest as in the present study, the asymptotically tightened and infinitely wound 
vortex roll-up singularity can be approximated by a single core vortex connected 
to a finite-winding-number vortex sheet (e.g. Pullin & Phillips 1981; Hoeijmakers & 
Vaatstra 1983) and the calculation of the outer vortex sheet roll-up can be continued. 

Recently, using a desingularized equation (Chorin & Bernard 1973), Rottman & 
Stansby (1993) showed that the solution develops into a series of high-wavenumber 
double-branched spirals beyond the finite critical time. The precise cause of these fine 
structures is unknown and it is not certain whether they can be removed by filtering. 
In any event, it is unclear whether these are representative of possible features of the 
non-desingularized equation. 

Like the simulation of an infinitesimal vortex sheet, numerical tracing of the free 
surface may also suffer instabilities (e.g. Longuet-Higgins & Cokelet 1976; see however 
Dold 1992). Thus the filtering/damping techniques for direct simulation of vortex 
and free-surface flows share many similarities. Some of the successful schemes include 
smoothing (Longuet-Higgins & Cokelet 1976 for a free surface; Moore 1981 for a 
vortex sheet), rediscretization (Fink & Soh 1978 for a vortex sheet; Dommermuth 
et al. 1988 for a free surface) and regularization methods (Chorin & Bernard 1973 
for a vortex sheet). A common feature of all these techniques which stabilize the 
numerical scheme is the effective introduction of damping into the dynamical system, 
or of a filter which suppresses the unstable modes. 

A common criticism of all these techniques is that the precise relationship between 
the computational results and the ‘exact’ mathematical solution and ultimately the 
actual physical problem is unclear. Our view is that with the limitations of the 
mathematical formulation in representing the physical model, and with the complexity 
of the physical system itself, there is much to be gained by accurate simulation and 
quantification of the global features despite the inevitable use of stabilizing techniques. 
The alternative of adopting full viscous free-surface simulations for high Reynolds 
numbers is otherwise prohibitive. We are especially encouraged by the promising 
results of Vinje & Brevig (1981) for simulation of nonlinear free-surface motions, and 
by Faltinsen & Pettersen (1982) for a vortex sheet shed from a moving body. Our 
goal is that, by performing accurate numerical simulations and systematic convergence 
tests especially with respect to the regularization parameters, a reliable description of 
the fundamental physical processes can be obtained. 

Mathematical formulation of the mixed first- and second-kind Cauchy integral 
equations which describe the initial-boundary-value problem is given in $2. The 
mixed-Eulerian-Lagrangian method we employ and the detailed numerical imple- 
mentation are described in $3. Of special importance is the use of cubic smoothing 
splines and an adaptive curvature-controlled rediscretization algorithm to suppress 
spurious short-wavelength instabilities and to optimize the resolution and efficiency 
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of the simulations. Extensive numerical tests to validate the accuracy and show the 
convergence of the numerical scheme are also presented. Detailed simulation results 
for the entire range of interest of the Froude number are given in $4. Three critical 
ranges of Froude number - subcritical, transcritical and supercritical - are identi- 
fied based on the features of interaction between the free surface and the shed vortex 
sheet which are described in detail. Finally, physical properties of the motions which 
characterize the Froude-number dependence are presented. Preliminary results from 
this investigation were reported in a letter (Tsai & Yue 1991). 
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2. Mathematical formulation 
2.1. Mixed first- and second-kind integral equation 

We consider as a canonical problem the abrupt starting from rest to constant hor- 
izontal velocity U of an infinitesimally thin vertical surface-piercing strut of initial 
submergence d .  A thin shear layer is shed from the edge of the submerged strut 
continuously as time proceeds. The flow, excluding the shear layer, is assumed to be 
inviscid, incompressible and irrotational which implies the existence of an analytic 
velocity potential $(x, y ,  t)  and stream function y(x, y, t). We define Cartesian coordi- 
nates with the origin at the interaction point of the undisturbed free surface (y = 0) 
and the rest position of the plate (x = 0), with y positive upwards. For deep water, 
this problem is governed by only one parameter, the Froude number Fn  = U/(gd)i, 
where g is the gravitational acceleration. In the following, length and time units are 
chosen such that d = g = 1. The computational domain is enclosed by imposing 
periodic boundary conditions far up- and downstream (at x = H / 2 ) .  The contour 
of the solution domain consists of the free surface (Cf), the portion of the plate with 
fluid on one side (Cp), the submerged portion of the plate (CJ, and the vortex sheet 

Since the complex potential, B(z, t) = 4(x, y ,  t) + iy(x, y ,  t), where z = x + iy, is 
analytical inside the fluid domain, Cauchy's integral theorem gives for each time 
instant t 

f P(z,t)K(z;zk)dz + 7 [4(z,t)]K(z;zk)dz + i2B,(t) (2.1) 

(C"). 

B(zk,t) = 7 1n 
171 ' J  

12n 12n ' f  

Cf UCP C,UC" 

when zk E C, u C,, and 

B*(Zk,  t) = *; [4(Zk, 01 
+?-- 1 B(z,t)K(z;zk)dz + - [~$(z,t)]K(z;zk)dz + iP,(t) (2.2) 

when zk E C, U C,. In the above, [$(z,t)] = 4+ - 4- is the potential jump across 
C, and C,, and $,(t) is a complex constant resulting from contour integration along 
z E [ 4 / 2  - ioo, t / 2  - im]. The kernel function, 

Cf UCP C W "  

is the complex potential which satisfies Laplace's equation inside the fluid domain 
excluding z = zk and a periodic boundary condition at x = + t / 2 .  

We define the direction of contour integration in the anticlockwise sense such that 
the windward (leeward) side of the plate and shear layer are the positive (negative) 
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side of the contour. Taking the imaginary and real parts of (2.1) for zk E C j  and C, 
respectively, we obtain second-kind Fredholm integral equations for y on Cf and 
on C,. The imaginary part of (2.2) when zk E C, gives first-kind integral equations for 
the potential jump [+] on C,. To avoid a weak singularity at the intersection point 
we specify the known p at both upper (C, n C,) and lower (Cf n C, n C,) intersection 
points (Lin 1984). 

2.2. Boundary and initial conditions 
On the plate surfaces C, and both sides (+/-) of C,, the prescribed uniform horizontal 
velocity gives the Neumann boundary condition in terms of the stream function: 

(2.4) y ( x  = t ,  y ,  t )  = y (z E c, u CJ. 

On the free surface Cj, the kinematic boundary condition is 

DZ ap* 
= w (z E Cj) ,  _ -  -- 

D t  d z  (2.5) 

where D / D t  is the material time derivative, and w(z, t )  = u(x, y ,  t )  + iu(x, y ,  t )  is the 
complex velocity. From Bernoulli's equation, the dynamic boundary condition for 
zero atmospheric pressure on the free surface Cj gives 

1 
- - - I  D+ - ,ww' - -Im(z) 
D t  Fn2 (z E C j ) .  

The vortex sheet C, is a material surface with zero pressure jump across the shear 
layer and is convected according to 

Dz - = 1 (w+ + w - )  
D t  

The unsteady Kutta condition at the separation point specifies that the flow leaves the 
trailing edge tangentially (i.e. vertically downwards). Such a condition ensures that at 
the trailing edge the velocity is finite and the pressure jump vanishes. Applying this 
Kutta condition to the unsteady Bernoulli's equation gives the rate of change of the 
shear layer strength leaving the tip of the plate: 

24 D t  = ;(w-w-' - W+W+') (z = t + i). 
The initial conditions at t = 0 are specified with the free surface quiescent (4 = 0 
and Cf : Im(z) = 0) and a starting point vortex is shed using a similarity solution 
(e.g. Graham 1983) for its strength and position. 

2.3. Unsteady force and energy 
The unsteady horizontal force F, acting on the plate can be calculated by integrating 
the pressure distributions on both sides of the plate. An alternative expression for F, 
can be obtained from consideration of momentum conservation (e.g. Newman 1977), 
and is given for the present flow by 

d d 1 
dt dt Fn2 

F =-- / +nxds -- / [41nxds -- 1 yn,+ds,  (2-9) 
cJuc~ CAJC" cJuc~ 

where n, is the horizontal component of the unit outward normal. The third integral 
vanishes in the present context of periodic conditions on the up- and downstream 
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boundaries. The first two integrals in (2.9) (due to the non-dimensionalization) also 
give the work done W on the fluid by the forced plate motion. 

K-T.  Tsai and D. K .  P. Yue 

The total energy of the flow motions is 

(2.10) 

where ny is the vertical component of the unit outward normal. The first and second 
integrals correspond to the kinetic energies of the free surface and vortex sheet 
motions respectively. The third integral represents the potential energy of the free 
surface. The inviscid flow formulation of the problem guarantees the conservation of 
energy, i.e. W = E .  

3. Numerical implementation 
3.1. The mixed-Eulerian-Lagrangian method 

The initial-boundary-value problem (2.1)-(2.8) in $2, including the motions of the free 
surface, shear layer and moving plate, is solved using a mixed-Eulerian-Lagrangian 
approach. In order to solve the mixed first- and second-kind integral equations, 
contour integrations in (2.1) and (2.2) are approximated by representing the contour 
boundaries by piecewise-linear segments with piecewise-linear distributions of p and 
[4] along the segments. The discrete forms of the mixed first- and second-kind integral 
equations are then solved by evaluating the integrations at suitable collocation points 
zk. For the second-kind integral equations, the collocation points are on the nodes 
of the line segments. For the first-kind equations, the zk are placed at the midpoints 
of the segments. In order to obtain two more equations for the complex constant 
Pm(t), we also collocate at the upper intersection point and at the midpoint of the 
segment above the lower intersection point. Details of the numerical implementation 
in discretizing the integral equations can be found in Appendix A. 

The evolutions of the free-surface position and potential are updated by integrating 
in time the kinematic and dynamic free-surface boundary conditions (2.5) and (2.6), 
using three-point Lagrange formulae for the complex velocity w ( z ,  t )  = dp(z, t ) / d z .  
The velocities at the intersection points are obtained from differencing the nodal 
values of p on the plate below the intersection points. An explicit fourth-order 
Runge-Kutta scheme, which is conditionally stable for the linearized free-surface 
boundary conditions, is used to carry out the time integration. 

The potential jump at the separation point of the plate is updated according to 
(2.8), where the velocities W* are calculated by differencing the values of p* at 
the midpoints of segments above the separation point using three-point Lagrange 
formulae. A new shear-layer segment is shed continuously at each time step. The new 
segment has an updated potential jump at the separation point, and the value of the 
shed potential jump from the previous time step at the other end which is convected 
from the separation point. The vortex shear layer is convected by a fourth-order 
Runge-Kutta integrating scheme according to the evolution equation (2.7). 

3.2. Adaptive rediscretization algorithm 
In order to control the growth of short-wavelength instabilities and to optimize the 
computational efficiency, we use a rediscretizing algorithm based on a cubic smoothing 
spline and a mesh-function-controlled node adjustment scheme. After the Lagrangian 
boundaries (Cf and C,) are updated, smoothing cubic splines are calculated in the 
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FIGURE 1. Free-surface profiles of a plunging breaking wave at t = 1.0, 1.2, 1.4 and 1.5 for different 
values of the smoothing parameter i = lo6, lo7, lo8 and co. 

least square sense to fit the nodes of meshes (e.g. de Boor 1978; Lancaster & 
Salkauskas 1990). The free surface and the shear layer are then rediscretized based on 
equidistribution of an appropriate mesh function (Hyman & Naughton 1985) on each 
segment. Details of the adaptive rediscretization algorithm are given in Appendix B. 

Our computational experiments (Tsai 1991) show that the present adaptive redis- 
cretization algorithm performs much more robustly and efficiently than the application 
of smoothing formulae (Longuet-Higgins & Cokelet 1976) or the use of equal-segment 
regridding for the mixed-Eulerian-Lagrangian method. As illustrations, we apply the 
adaptive rediscretization algorithm to two test problems which possess abrupt geo- 
metric changes and drastic evolutions: (i) a plunging free-surface wave; and (ii) the 
periodic double-branched spiral roll-up of a vortex sheet. The results are shown for 
systematic variations of the four parameters governing the rediscretization algorithm : 
the smoothing parameter A, the mesh function increment I, ,  and the maximum and 
minimum segment sizes ha, and hmin. 

We generate a plunging breaking wave by imposing, as an initial condition, a 
sinusoidal free-surface profile of unit wavelength and 0.1 steepness and a surface 
potential corresponding to a linearized Airy wave. This wave develops in time under 
the effect of gravity and eventually turns over in a plunging wave. We follow this 
development with 80 Lagrangian points per wavelength without nodal redistribution 
but apply a smoothing spline fitting to the free-surface nodal positions and potentials 
every fifth time step. 

Figure 1 shows the evolution of the free-surface profiles for different values of the 
smoothing parameter: I. = 106,107,10* and co. The infinite A corresponds to the 
absence of any smoothing effect. The free-surface profiles are indistinguishable for 
the range of 1 used except near the tips of the plunger. Near the tip, the profiles 
quickly converge to the non-smoothed one with increasing 1. The absolute error in 
the volume conservation and the percentage total energy loss for the different 1 values 
are summarized in table 1. The volume error is less and the energy loss is less 
than 1% of the total energy up to the re-entry of the plunger near t = 1.5. 

The effect of changing the maximal segment size h,,, and the mesh function 
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Volume error Energy loss (%) 

1 t = 1.2 1.4 1.5 t = 1.2 1.4 1.5 
lo6 0.000383 0.000480 0.000510 0.3395 0.6793 0.9415 
lo7 0.000343 0.000407 0.000414 0.4101 0.8005 1.1014 
10' 0.000340 O.OOO401 0.000406 0.4090 0.8045 1.1130 
1040 0.000340 0.000401 0.000405 0.4082 0.8047 1.1153 
co 0.000340 0.000401 0.000405 0.4082 0.8047 1.1153 

TABLE 1. Absolute error of volume conservation and percent total energy loss for the plunging 
free-surface simulation at t = 1.2, 1.4 and 1.5 with different smoothing parameter L values. 

h ,  Volume error Energy loss (YO) I, Volume error Energy loss (W) 
0.040 0.000386 3.0828 271110 -0.000265 3.2012 
0.035 0.000276 2.4477 27~/15 -0.000065 2.3279 
0.030 0.000254 1.6191 2 ~ 1 2 0  0.000065 1.7173 
0.025 0.000133 1.3357 2n/25 O.OOOO95 1.5451 
0.020 0.000049 0.99 18 2 ~ 1 3 0  0.000133 1.3357 

TABLE 2. Absolute error of volume conservation and percent total energy loss for the plunging 
free-surface simulation at t = 1.4, with different values for the maximal segment size h,,, and 
mesh-function increment I ,  

increment I ,  is shown in table 2 for the volume error and energy loss at t = 1.4 with 
R = lo'', hmin = 0.001, and (a) I ,  = 27~/30, h,,, = 0.04, 0.035, 0.03, 0.025 and 0.02; 
and (b) h,, = 0.025, 2a/I, = 10, 15, 20, 25, 30. Both volume error and energy loss 
decrease with decreasing h,,,. The energy loss decreases when I ,  decreases (finer grid), 
whereas the volume conservation changes sign from a net loss to a net gain. The 
minimum segment size hmin, which controls the highest resolution of discretization, is 
found to have only a negligible effect on the simulation results. 

Next we test the adaptive rediscretization algorithm for the roll-up of a periodic 
vortex sheet with initially constant strength and a small-amplitude perturbation 
(Krasny 1986b). We plot in figure 2 the vortex roll-up at t = 2.0 with h,,, = 0.1, 
hmin = 0.0025, I ,  = n/10 and A = loM, 1O1O and lo6. The inner spiral of the 
roll-up is amalgamated into a point vortex, as described in the next section, with a 
2a cutoff winding angle. The results show very little difference in the vortex sheet 
roll-up between the strong smoothing (A = lo6) and the effectively non-smoothing 
case ( A  = lo'@). Also plotted in figure 2 is the result using the vortex-blob method 
(Krasny 1986b) with the blob radius 6 = 0.12 and 500 vortex blobs. The comparison 
between the solutions by the present scheme and the vortex blob method is very close 
for the outer-spiral turns, demonstrating the accuracy of the present result and also 
the minimal effect of amalgamation on the global motions. 

Figure 3 shows the roll-up at t = 2.0 for different mesh-function increments 
z / I ,  = 5, 10 and 15. The resolution within the rolled-up spiral is improved, as 
expected, with increasing I , .  The effect of varying the maximal segment size h,,, on 
the vortex sheet roll-up is shown in figure 4. The vortex sheet positions for different 
values of h,,, are very close in the rolled-up region except near the braid. The results 
also demonstrate that the influence of the initial discretization on vortex roll-up since 
initially all segment sizes are approximately equal to h,,,. Unlike the free-surface 
case in which the result converges with decreasing h,,,, here reducing segment size 
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FIGURE 2. Double-branched spiral roll-up of a periodic vortex sheet at t = 2.0 for different values 
of the smoothing parameter 1 = lo6 10" and lom; and by a vortex blob method with 500 vortex 
blobs and a blob radius S = 0.12. 

-0.50 -0.25 0 0.25 
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FIGURE 3. Double-branched spiral roll-up of a periodic vortex sheet at t = 2.0 for different values 
of the mesh-function increment I ,  = n/15, n/10 and x / 5 .  

introduces modes with higher growing rates. Nevertheless, the global features of the 
roll-ups are the same with the same embedded initial perturbation. 

3.3. Amalgamation of single- and double-branched spirals 
To avoid numerical difficulties in the simulation of an asymptotically tightened and 
infinitely wound spiral roll-up, we approximate a single- or double-branched spiral 
vortex sheet by a single core vortex connected to a finite-winding-number vortex 
spiral outside (e.g. Pullin & Phillips 1981; Hoeijmakers & Vaatstra 1983). The 



700 W-T. Tsai and D.  K .  P.  Yue 

0.25 

Y O  

-0.25 

-0.50 -0.25 0 0.25 
X 

FIGURE 4. Double-branched spiral roll-up of a periodic vortex sheet at t = 2.0 with different 
maximum segment sizes h,,, = 0.1, 0.08 and 0.06. 

single-branched spiral roll-up develops from the starting vortex shed at t = 0 which 
continues to roll up into a spiral as time increases. The double-branched roll-up results 
from steepening of the circulation distribution along the shear layer. In both cases, 
the excess portion of the shear layer is amalgamated into the core vortex whenever 
the winding angle of the spiral roll-up exceeds a prescribed value. The amalgamation 
into a core vortex in effect approximates the steep circulation distribution by a 
step function. The strength and position of the amalgamated vortex are determined 
according to the conservation of circulation and linear moment of the circulation. 

Figure 5 shows the effect of amalgamation on the evolution of (a) a single-branched 
spiral resulting from the roll-up of a vortex sheet shed by a moving plate with 71/2 

angle of attack; and (b) a double-branched spiral roll-up of a periodic vortex sheet. 
By varying the cutoff winding angle, it is seen that the application of amalgamation 
has a negligible effect on the motions outside the innermost turns of the single- and 
double-branched spirals. 

3.4. Accuracy of numerical time integration 
As shown in Dommermuth et al. (1988), the explicit fourth-order Runge-Kutta time 
integration for linearized free-surface boundary conditions is conditionally stable 
and mildly dissipative. The Courant condition for the stability of the Runge-Kutta 
method is: At2 d 8Fn2As/n, where At is the time step of integration and As the 
segment size on the free surface. For our simulations in $4, the typical minimal 
free-surface segment is 0.01, and the time step is 0.005 which is much less than that 
required by the (linearized) Courant condition. 

To check the accuracy and convergence of the time-stepping procedure for the 
vortex sheet shedding and tracing, we consider the shedding and subsequent roll-up 
of the vortex sheet shed by a plate moving perpendicularly in infinite flow. Figure 6 
shows the vortex sheet positions at t = 4.0 obtained using different integrating time 
steps (At = 0.04, 0.02, 0.01 and 0.008) of the Runge-Kutta scheme. The monotonic 
convergence with At is clearly demonstrated. 
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FIGURE 5. Application of amalgamation with cutoff winding angles 0 = IL, 271 and 371 for (a) 
a single-branched spiral roll-up at t = 5.0 shed by a moving plate in infinite flow; and (b)  a 
double-branched spiral roll-up of a periodic vortex sheet at t = 2.0. 

3.5. Eflect of grid spacing on the plate 
The discretization of the plate segment affects both the motions of the intersection 
points and the vortex shedding at the separation point. Careful studies were carried 
out by Lin (1984) regarding the effect of grid spacing near the intersection point 
between a moving wall and a free surface. For abrupt starting motions, the free 
surface at the wall rises sharply forming a long thin upward jet. As the grid density 
near the intersection corner is increased, the representation of the jet is improved, but 
the effect on the global free-surface motion is small. 
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different integrating time steps At = 0.04, 0.02, 0.01 and 0.008. 
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FIGURE 7. Single-branched spiral roll-up at t = 4.0 shed by a moving plate in infinite flow with 

different unifurm- and cosine-spaced segments OR the plate. 

The grid spacing near the separation point is, however, more sensitive since it 
affects not only the vortex shedding but also the later motions of the vortex sheet. 
To evaluate these effects, we again consider the perpendicular starting motion of a 
plate in infinite fluid using both cosine spacing and a two-zoned uniform spacing with 
different constant segment sizes on the two regions of the plate. Figure 7 shows the 
resulting shed spiral at t = 4.0. The two-zoned uniform spacing is arranged such that 
finer segments (hSp = 1/40 and 1/60) are distributed within a quarter of the length 
of the plate from the separation point, and the rest of the plate is discretized with 
constant segments size h = 1/28. Two cosine-spacing grids with total segment number 
Nseg = 40 and 48 are also tested. For Nseg = 48, the segment above the separation 
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point is only approximately 0.002, which is significantly smaller than that in the 
two-zoned uniform grids. The profiles are virtually indistinguishable for Nses = 40 
and 48 cosine-spacing grids. The two-zoned uniform spacing results show smooth 
convergence to these profiles. For the surface-piercing plate in $4 (with changing 
submerged length with time), we use two-zoned uniform-spacing along the plate with 
fixed and finer discretization near the separation point and uniformly rediscretize the 
rest of plate at each time step. 

4. Computational results 
4.1. Critical Froude number for free surfacelvortex interactions 

We perform a systematic study of the free surface and shed vortex sheet interactions 
behind a moving vertical plate by varying the Froude number Fn over the entire 
range of interest. In addition to the computational parameters discussed in $3, two 
global conditions may affect the interaction features we obtain: the length of the 
periodic computational domain and the initial start-up motion of the plate. Extensive 
tests have been performed (Tsai 1991) to evaluate the effect of changing the length 
of the periodic computational domain and possible sensitivity to the detailed starting 
motion of the plate. Selected results are given in Appendix C. Overall, we show 
that the dependence of the evolutions on Fn as well as the characteristic features of 
the interaction dynamics are unaffected by our choice of the computational domain 
length ([=lo) or by (small) changes in the initial startup plate motion. 

Based on the studies in 53 and Appendix C, for the computational results in the 
following, we choose the time step of the Runge-Kutta integration At = 0.005 and the 
periodic domain length G = 10. The discretization on the plate is uniform with fixed 
segment size Ah,,,=1/60 on the portion within one tenth of the initial submergence 
from the separation point, and with segment size Ah approximately equal to 0.04 for 
the rest of the plate which is uniformly rediscretized at every time step. Adaptive 
rediscretization is applied to the free surface every five time steps with A = lo8, 
I ,  = n/lO, hma,=0.06, h~,,=0.01; it is applied to the vortex sheet every time step 
with 1 = lo8, I ,  = n/ l l ,  hma,=0.06, hmi,=0.008. In all of our computations, the fluid 
volume is conserved to at least and the total energy (compared to work done) 
conserved to within 4% for the duration of the simulations. All our simulations are 
typically continued to a point limited by the applicability of the present numerical 
method - namely, when a plunging free surface re-enters the fluid, or when a vortex 
sheet and the free surface or branches of a vortex spiral cross each other. The 
computer run time for a typical simulation, for example the one for figure 11, is about 
two hours on a Cray Y-MP supercomputer. 

From our numerical simulations, three qualitatively different classes of interactions 
can be identified, corresponding to subcritical (Fn 5 0.7), transcritical (Fn - 0.7-1.0), 
and supercritical (Fn X 1.0) values of Fn. The salient and characteristic features of 
these three classes of interaction dynamics within the near wake of the plate can be 
summarized as follows (see figures 8-15) : 

Rapid development of the free surface due to forcing of 
the plate leads to free-surface plunging breaking before significant interactions with 
the starting single-branched spiral vortex can develop. 

Transcritical Fn (Fn - 0.7-1.0) Backwards propagating free-surface set-down 
pushes backwards the single-branched spiral and stretches the vortex sheet. The 

Subcritical Fn (Fn 5 0.7) 
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RGURE 8. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate for 
a subcritical Froude number Fn = 0.5. 
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FIGURE 9. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate for 
a subcritical Froude number Fn = 0.6. 

stretched vortex sheet rolls up into a series of double-branched spirals with however 
limited interactions with the free surface. 

Supercritical Fn (Fn 2 1.0) In contrast to the transcritical case, the double- 
branched spirals form near the free surface resulting in significant interactions and 
prominent free-surface features. 

4.1.1. Subcritical Froude number (Fn 5 0.7) 
Figures 8 and 9 show representative evolutions of the subcritical Froude number 

motions at Fn = 0.5 and 0.6. At the early stage, a vortex sheet is shed from the 
separation point which quickly rolls up into a single-branched spiral. Owing to the 
impulsive motion of the plate, the free surface on the forward side of the plate shoots 
up rapidly in the form of a thin jet. Numerical difficulties associated with simulating 
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for a transcritical Froude number Fn = 0.7. Details at t = 1.0, 1.8, 2.3, 2.45, 2.5 and 2.53. 
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F'IGURE 11. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate 
for a transcritical Froude number Fn = 0.8. Details at t = 1.0, 1.9, 2.2, 2.35, 2.55 and 2.6. 

a very thin film on the forward face are avoided by cutting that portion of the film 
whose thickness is less than a small fraction (we use 2%) of the local segment length, 
and a new intersection point is specified. In contrast, the intersection point on the lee 
side is drawn down and meets the plate at a finite contact angle. 

As time proceeds, the single-branched spiral grows in size and the vortex sheet 
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FIGURE 12. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate 
for a transcritical Froude number Fn = 1.0. Details at t = 1.25, 1.65, 1.8, 1.95, 2.05 and 2.15. 

continuously rolls into the spiral centre. A free-surface disturbance propagates away 
from the forward face of the plate, eventually forming a plunging breaker. (Our 
simulations stops shortly before re-entry of the plunger). On the lee side of the plate, 
a smaller backward propagating wave front is formed near the plate which ultimately 
also breaks. Consistent with and similar to the infinite-fluid (Fn = 0, e.g. figure 5a) 
case, the single-branched spiral remains attached to the plate. The centre of roll-up, 
however, becomes shallower as it grows, resulting in a small deformation of the 
free surface. The free-surface and vortex sheet evolutions for this range of Froude 
numbers are thus characterized by negligible to weak interactions between the two. 
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FIGURE 13. Velocity field in the wake of a moving vertical plate for Fn = 0.9 at 

t = 0.9, 1.7, 2.1 and 2.2. 

4.1.2. Transcritical Froude number (Fn - 0.7-1.0) 
The early stages of the free-surface and vortex-sheet evolutions are similar for the 

three classes. After the single-branched spiral develops, however, significantly different 
interactions are observed for the transcritical and supercritical Froude number (Fn 2 
0.7) cases. 

Figures 1&12 show the evolution of the free surface and vortex sheet for Fn = 0.7, 
0.8 and 1.0 respectively, illustrating the salient features of the transcritical interactions 
in the wake of the plate. The depression of the free surface on the lee side of the 
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FIGURE 14. Vorticity strength along the vortex sheet as a function of the arclength s measured 
from the separation point for Fn = 0.9 at t = 0.9 (dash-dotted line) and 1.7 (solid line). 
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FIGURE 14. Vorticity strength along the vortex sheet as a function of the arclength s measured 
from the separation point for Fn = 0.9 at t = 0.9 (dash-dotted line) and 1.7 (solid line). 

plate pushes the single-branched vortex spiral downstream causing the vortex sheet to 
stretch between the single-branched roll-up and the shedding point. At this stage, the 
rate of vortex shedding at the separation point decreases to a small value (figure 17) 
and finite-amplitude Kelvin-Helmholtz instabilities develop on the stretched portion 
of the vortex sheet. As time proceeds, these instabilities grow and eventually roll up 
into double-branched spirals as shown in figure 10 at t > 2.45 for Fn = 0.7, figure 11 
at t > 1.9 for Fn = 0.8, and figure 12 at t > 1.8 for Fn = 1.0. 

The onset of Kelvin-Helmholtz instabilities is shown for the Frz = 0.9 case in figure 
13 which plots the velocity vector fields in the wake of the plate at different times. 
At the initial stage, t = 0.9, the wake flow is mainly influenced by the rolled-up 
starting vortex which has developed to a considerable size. As the large free-surface 
depression associated with the plate starting motion propagates backward, it prevents 
the vortex spiral from rising and pushes it further downstream creating a stretched flat 
vortex sheet between the separation point and the rolled-up spiral (t = 1.7). Owing 
to flows in opposite directions on the upper and lower sides of the stretched vortex 
sheet, a strong shear develops which amplifies the initial growth of instabilities on the 
stretched vortex sheet. These instabilities then quickly roll up into double-branched 
spirals starting from the portion of shear layer near the single-branched spiral (t = 2.1 
and 2.2). 

Note that the present stretching process, which is due to the interaction between the 
free surface and the shed vortex sheet, differs from the vortex stretching in Moore & 
Griffith-Jones (1974) wherein the strength of the vortex sheet is a decreasing function 
of time as in the roll-up of a vortex spiral. As pointed out by Moore & Griffith-Jones, 
such a decrease of vorticity strength may actually stablize the Kelvin-Helmholtz 
instability and suppress the growth of short-wave disturbances. The present vortex 
stretching between the separation point and the rolled-up spiral such as that in figure 
13, however, creates an unstable parallel shear flow across the vortex sheet. The reason 
for that can be see in figure 14 where we show the vorticity strength d[4]/ds along 
the vortex sheet at t = 0.9 and 1.7 for the same case, where s is the arclength of the 
vortex sheet from the separation point. As time proceeds, the length of vortex sheet 
between the roll-up of the spiral and the separation increases (from approximately 0.3 
at t = 0.7 to 0.8 at t = 1.7) but so also does the vorticity strength. Such amplification 
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in magnitude of the shear flow destablizes the vortex sheet and causes the onset of 
Kelvin-Helmholtz instability. 

The main difference between the transcritical and supercritical cases is in the 
strength of the interactions between the free-surface waves and the Kelvin-Helmholtz 
instabilities on the vortex sheet. For transcritical Froude numbers, the double- 
branched spirals form well below the free surface. The interactions between the 
free surface and Kelvin-Helmholtz waves are consequently weak and allow the 
instabilities on the stretched vortex sheet to roll up continuously, forming a series of 
double-branched spirals. For higher Froude numbers in the transcritical range, e.g. 
Fn = 1.0 at t = 2.15 in figure 12, the double-branched spirals interact with each other 
and may eventually merge into a single vortex spiral. 

The free-surface depression behind the plate continues to develop, the backward- 
facing surface steepens and eventually develops into a backward-plunging wave. 
The intersection point on the lee side of the plate moves downward with time, 
asymptotically reaching a constant depth (see figure 19). 

4.1.3. Supercritical Froude number (Fn X 1.0) 
The features of the free surface/vortex interactions at a later stage for the supercriti- 

cal Froude number are distinct from those of the transcritical case, as shown in figures 
15 and 16 for Fn = 1.2 and 1.5 respectively. As in the transcritical cases, the initial 
rapid free-surface set-down in the lee of the plate pushes the single-branched spiral 
downward and forms a stretched, unstable vortex sheet. As the Kelvin-Helmholtz 
instability grows, a single double-branched spiral forms on the perturbed, stretched 
vortex sheet beneath the forward side of the free-surface depression. Unlike the tran- 
scritical cases, such a solitary double-branched spiral grows in size, approaches and 
eventually becomes entrained into the free surface. The free-surface deformation is 
strongly affected by the rising double-branched spiral, developing a sharp depression 
between the single- and double-branched spirals. 

In these supercritical cases, the free-surface disturbance on the front side of the plate 
does not propagate away. The free-surface jet-like elevation on the plate is pushed 
forward and continues to rise indefinitely in our computations. On the leeward side, 
the lower intersection point on the plate likewise continues to moves downward (see 
figure 19), and the free surface eventually sluices from the lower tip of the plate (when 
our simulations stop). 

4.2. Time evolution of characteristic properties 
To quantify the above observations, we compare the time evolution of physical 
properties which characterize the Froude-number dependence of the interactions. 
Figure 17 shows the rate of vortex (circulation) shedding -d[$],,,/dt at the separation 
point for different Fn. Unlike vortex shedding in infinite flow which increases 
monotonically at later stages, for finite Froude numbers the shedding rates rise to 
a maximum and then levels off after a characteristic time. The asymptotic shedding 
rate decreases monotonically with increasing Fn, although it is difficult to discern a 
qualitative difference between the Froude-number regimes. 

To show the effect of the free surface on the motion of the starting single-branched 
spiral, we plot, in figure 18, the paths of the spiral centre: (xsc - t , y sc )  for different Fn. 
For subcritical Fn, the spiral approaches the free surface as it grows. The backward 
movement of the vortex is due to the growth of the rolled-up spiral and not the 
free-surface motion. The elevation of the spiral centre decreases monotonically as Fn 
increases due to interactions with the depressed free surface. In addition, the starting 
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FIGURE 15. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate 

for a supercritical Froude number Fn = 1.2. Details at t = 1.25, 1.405, 1.7, 1.75, 2.0 and 2.3. 

free-surface depression in the wake pushes the spiral downstream thus stretching the 
shear layer between the roll-up and the separation point. 

The vertical movement of the lower intersection point (C,nC,nC,) is shown in figure 
19 where the vertical position yri(t)  is plotted. For both subcritical and transcritical 
Froude numbers (Fn  5 LO), the lower intersection point moves downward first and 
then oscillates. For supercritical Fn, yri decreases monotonically with time, eventually 
causing the plate to sluice. 

The evolution of the energy ( E )  of the fluid can be calculated according to (2.10) 
and is shown in figure 20. Also plotted in the figure is the kinetic energy component 
due to the vortex sheet (E") .  The total energy increases in time for all Froude numbers 
since the motion of the plate continues to impart energy to the fluid. The vortical 
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FIGURE 16. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate 
for a supercritical Froude number Fn = 1.5. Details at t = 1.0, 1.65, 2.0, 2.2, 2.4 and 2.45. 

part of the kinetic energy shows a clear distinction between the subcritical and higher 
Froude numbers. For subcritical Fn, E" rises steadily with increasing time consistent 
with an effectively attached single-branched shed vortex spiral, while for higher Fn, 
E" reaches steady asymptotes after t = 0(1) as interactions with the free surface cause 
the starting spiral to be detached. 

Finally, we show the time histories of the unsteady horizontal force acting on the 
plate F,, and the component of the force due to the vortex sheet F; in figure 21. Note 
that F, equals the power input by the plate or equivalently the rate of total energy 
change in the fluid. For subcritical Fn, the total force first increases with time and 
then decreases rapidly. During the time when the total force decreases, the component 
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FIGURE 18. Trajectories of the single-branched spiral centre for different Froude numbers. 

due to the vortex sheet increases sharply, eventually contributing to almost all of the 
total force. For the transcritical and supercritical cases, the total force variation is 
more gradual. At a later stage, the force due to the vortex sheet is small, indicating 
the detachment of the rolled-up spiral. 

5.  Conclusions 
The complex interactions between a free surface and a shed vortex sheet in the 

wake of a moving body are examined and quantified by considering the canonical 
problem of the starting motion of a partially submerged vertical plate. Depending on 
the Froude number based on the initial plate submergence, three classes of interaction 
dynamics are identified. For subcritical Froude number (Fn 5 0.7), the free surface 
breaks on both forward and backward faces before significant interactions with 
the shed vortex sheet occur. In the higher Froude number range (Fn R l .O), the 
strong drawn-down deformation of the free surface on the rearward face stretches 
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FIGURE 20. Time evolution of the total energy E and the energy component associated with the 
vortex sheet E" for different Froude numbers. 

the trailing vortex sheet and causes finite-amplitude Kelvin-Helmholtz instabilities. 
For transcritical Froude numbers (Fn - 0.7-1.0), these instabilities form sufficiently 
deep below the free surface and allow them to continuously roll up into double- 
branched spirals. For supercritical Froude numbers (Fn 2 LO), the instabilities entrain 
the free surface resulting in prominent free-surface deformations. Our numerical 
simulations elucidate the underlying mechanisms and basic features of vortex-free 
surface dynamics, such as free-surface breaking, vortex entrainment, detachment of the 
starting vortex, stretching of the shed vortex sheet, and single- and double-branched 
spiral roll-ups. 

A numerical scheme based on the mixed-Eulerian-Lagrangian approach and 
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FIGURE 21. Time evolution of (a) the total horizontal force F,; and (b) the force component due to 
the vortex sheet F i ;  for different Froude numbers. 

Cauchy-integral formulation is developed. The scheme is effective and robust and 
incorporates features such as smoothing spline fitting, mesh-function-controlled redis- 
cretization and spiral amalgamation. Detailed accuracy and convergence tests have 
been carried out to validate the numerical scheme. Such a numerical scheme can be 
extended to other vortex-free surface interaction problems such as the damping of 
floating body due to vortex shedding and the operation of near-surface hydrofoils. 

This study is a first step in an effort to understand the intricate features in the 
wake of a surface-piercing body. Even in the present context of two-dimensional 
inviscid flows, the resulting interaction dynamics are sublime and complex. Three- 
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dimensionality and the presence of viscosity lead to new features such as vortex 
reconnection and breakdown and are the subjects of future research. 
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Appendix A. Discretization and solution of the integral equations 
The integral equations (2.1) and (2.2) are discretized by approximating the contour 

boundaries by piecewise-linear segments, and /3 and 141 by piecewise-linear distribu- 
tions along the segments. Evaluating at suitable collocation points, the discretized 
integral equations then take the form of a system of linear equations: 

Zj€C,UCP ZjEC,UC" 

when z k  E C, (imaginary part equations), z k  E C, (real part equations), and 

Im [ 1 P j r j k  + [ $ ] j r j k  - 2nam] = - - 2 n V k ,  (A 2) 
Zj€CfUCP Zj€C,UC, 

when z k  E C,. The influence function r j k  is 

The integration in the influence function rkj which cannot be carried out explicitly 
is evaluated by subtracting a simple pole l / (z  - z k  + 6 j k t )  from the kernel K ( z j ;  z k )  as 

where d j k  = 1 when Re(zj - z k )  < --L/2, d j k  = -1 when Re(zj - z k )  > e/2, and a j k  = 0 
otherwise. The first integral can be evaluated analytically as in Vinje & Brevig (1981). 
Representing the kernel of the second integral by a multipole expansion up to second 
order and evaluating the integration gives 

z k  - z j - 1  - 6 ' t z j  - z k  + 6 j k 8  z k  - z j + l  - 6 ' e z j  - z k  + 6 j k d  
J k  ~n 

Z j + l  - z k  + 6 j k e  
+ 

z j - 1  - z k  + 6 j k d  Zj - Z j + l  
r j k  I k  In 

z j  - z j - 1  

Appendix B. Adaptive rediscretization algorithm 
Given a set of N nodes on the contour boundary f j  = { ( x j , y j )  I 1 d j < N}, a 

fitting smoothing spline S = { x ( s ) , y ( s )  I s, d s < sb} is solved by minimizing the 
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functional 

wit@ natural boundary conditions at s = s, and sb  (see de Boor 1978 or Lancaster 
& Salkauskas 1990 for details). The weighting parameter il measures the compro- 
mise between the smoothness or fitting (decreasing A) and accuracy or interpolating 
(increasing A) of the spline functions. 

After the smoothing spline is calculated, the contour is rediscretized based on 
equidistribution of a 'mesh function' K ( S )  (Hyman & Naughton 1985) along the 
contour such that the new node discretization satisfies a prescribed value of 

over each segment j .  In the present work, we choose as mesh function the local curva- 
ture of the contour. To guarantee a minimal a priori accuracy and to prevent the size 
of segments from decreasing too rapidly, we impose the constraint hmin f hj < h,,,, 
where h,, and kin are prescribed upper and lower limits for the segment sizes. The 
choice of hmin also guarantees the suppression of instabilities with wavelengths shorter 
than 2h,i,. In summary, the controlling parameters for adjusting the rediscretization 
are the weighting parameter for the smoothing cubic spline fitting A, the integral of 
the mesh function over each segment I, ,  and the maximal and minimal limits of 
segment size h,,, and kin. 

Appendix C. Effects of periodic boundaries and implusive plate 
motion 

Periodic conditions, imposed on the up- and downstream boundaries, are used to 
confine the computational domain. Although such boundaries eventually interfere 
with the free surface and vortex sheet motions, our present interest is the interactions 
in the near wake of the plate. For a given simulation time, we check the effect of 
the finite boundaries by increasing the length of the computational domain G. Figure 
22 compares the results for G = 10 and 20 for Fn = 0.8 and 1.5 at late stages of the 
simulation. It is evident that the free-surface and vortex evolutions are unaffected by 
our choice of G = 10 up to our simulation time of interest. 

To keep the dependence of the interaction dynamics to a single parameter - 
the Froude number, we use an impulsive acceleration of the plate with the plate 
velocity U(t) given by a Heaviside step function. Since this idealized start-up profile 
is physically unrealistic, the question remains of whether the classification according 
to F n  and the characteristic features of the interaction dynamics described in $4 are 
sensitive to the details of the initial motion of the plate. To investigate this, we 
consider the case of a smooth startup velocity profile given by U(t) = tanh(t/bt), 
where 6t measures the (finite) startup duration from rest to steady motion. 

Our computational experiments with small 6t = 0.1 (approximately 5% of the 
typical duration of our simulations) show that the main effect of a gradual starting 
motion is a small delay in the formation and growth of the starting single-branched 
spiral, effectively shifting the time coordinate (the delay according to the equivalent 
plate position is given by (ln0.5)ht M 0.76t). For subcritical Froude numbers, the 
single-branched spiral vortex forms well below the surface while the free surface 
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FIGURE 22. Profiles of the free surface and vortex sheet for (a) Fn = 0.8 at t = 2.6 and (b) Fn = 1.5 
at t = 2.45; for two lengths of the periodic computational domain e = 10 and 20. 

breaks without sig6ificant interactions with the vortex. The dynamical features of the 
subcritical regime are therefore not affected by details of the initial plate motion. 

The effect of the starting motion on the interaction dynamics for transcritical 
Froude number is shown in figure 23 for Fn  = 0.8. The plate positions at t = 1.075, 
1.975, 2.275, 2.425, 2.625 and 2.675 in figure 23 correspond approximately to those at 
the six time instants given in figure 11 for the impulsively started plate. The delay in 
the formation and growth of the single-branched spiral is seen by comparing figures 
11 and 23. As a result, the stretching of the vortex sheet, the onset of the Kelvin- 
Helmholtz instabilities, and the formation of the double-branched spirals are likewise 
postponed. The salient features and development, however, remain unchanged. 

Figure 24 shows the corresponding smooth startup evolution for a supercritical 
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F'IGURE 23. Evolution of the free surface and vortex sheet in the wake of a moving vertical plate 

for Fn = 0.8 with a gradual start-up motion (ht  = 0.1). 
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Froude number (Fn = 1.5). The plate positions at the t values in figure 24 are close 
to those in figure 16. Unlike the sub- and transcritical cases, the delayed formation 
and growth of the single-branched spiral now have a more noticeable effect on the 
subsequent interaction dynamics. As before, the delayed single-branched spiral growth 
postpones the stretching of the vortex sheet as well as the propagation of the free- 
surface depression. This delay of the set-down propagation accelerates the downward 
motion of the depressed free surface and consequently the approach of the stretched 
vortex sheet to the free surface (compare t = 1.725 in figure 24 and t = 1.65 in figure 
16). This expedites the onset of the Kelvin-Helmholtz instability on the stretched 
vortex sheet and the roll-up of the double-branched spiral (compare t = 2.075 in 
figure 24 and t = 2.0 in figure 16). The entrainment of the double-branched spiral 
into the free surface is also accentuated resulting in steep free-surface disturbances. 
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Eventually, these speed up the collapse of the free surface as shown at t = 2.125 
in figure 24. Thus a smoother start-up motion in effect accelerates the vortex-free 
surface interactions in the supercritical case. The mechanisms and features, however, 
remain quite similar. 
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